# A NOVEL INTRAMOLECULAR DISPLACEMENT REACTION OF 5-O-DESOSAMINYLERYTHRONOLIDE A OXIME 

Ronald A. LeMahieu,* John F. Blount and Richard W. Kierstead

Chemical Research Department, Hoffmann-La Roche Inc., Nutley, New Jersey 07110, U.S.A.
(Received for publication June 10, 1975)
We recently reported the cleavage of cladinose from erythromycin A oxime to provide $2^{\prime}$-acetyl-5-O-desosaminylerythronolide A acetoxime (1) ${ }^{1}$. In order to provide an intermediate useful for the preparation of a 2,3 -unsaturated macrolide, 1 was treated with methanesulfonyl chloride in pyridine to yield the 3-mesylate (2). The nmr spectrum of crude 2 revealed a methanesulfonate peak at $\delta 3.15$. Although the low resolution mass spectrum did not give a molecular ion peak, the highest observed mass at $m / e 656$ corresponds to loss of methanesulfonic acid from 2.

Compound 2 was heated with lithium chloride in DMF at $100^{\circ} \mathrm{C}$ to give a new compound ( $3, \mathrm{mp} 148 \sim 152^{\circ} \mathrm{C}$ ) which did not exhibit methanesulfonate or olefinic proton absorption in the nmr spectrum. The highest observed peak in the mass spectrum was again at $m / e$ 656. Microanalytical data for 3 were consistent with an empirical formula of $\mathrm{C}_{33} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{11}$. The structure was determined by X-ray analysis carried out on the methiodide derivative ( $\mathrm{mp} 163 \sim 169^{\circ} \mathrm{C}$ ) of 3 . Heating 2 in pyridine solution also gave 3.

## X-ray Diffraction Analysis of 3

Thin plates of 3 were obtained upon crystal-
lization from acetone-hexane. The crystals are orthorhombic, space group $\mathrm{P}_{1} 2_{1} 2_{1}$, with $a=9.40(2), \quad b=17.63(2), \quad c=27.81(3) \AA, \quad$ and $\mathrm{d}_{\text {calc }}=1.150 \mathrm{~g} \mathrm{~cm}^{-3}$ for $\mathrm{Z}=4$. The diffraction data were measured on a Hilger-Watts fourcircle diffractometer ( $\theta-2 \theta$ scans, Ni-filtered $\mathrm{Cu} \mathrm{K} \alpha$ radiation, pulse height discrimination). The size of the crystal used for data collection was $0.04 \times 0.5 \times 0.5 \mathrm{~mm}$. Of the $4898 \mathrm{ac}-$ cessible reflections with $2 \theta<140^{\circ}, 2821$ had intensities which were significantly greater than background. The reflection data were corrected for absorption ( $\mu=59.7 \mathrm{~cm}^{-1}$ ).
The structure was solved by Patterson and Fourier methods and all refinements were carried out by full-matrix least squares. In the preliminary refinement the imaginary part of the anomalous dispersion correction for iodine ( $\Delta \mathrm{f}^{\prime \prime}$ ) was set to zero. Structure factors were then calculated, including the contribution of $\Delta \mathrm{f}^{\prime \prime}$, for the structure and its antipode. The configuration corresponding to the lower weighted R value ( 0.204 and 0.224 ) was taken as the absolute configuration. Since this configuration was the same (except at $\mathrm{C}-3$ ) as that reported for erythromycin $\mathrm{A}^{2)}$, no further verification of the absolute configuration was made. In the following refinements the full anomalous dispersion correction was included. The final discrepancy index was $\mathrm{R}=0.096$ for the 2821 observed reflections (iodine anisotropic, lighter atoms isotropic, no hydrogens). A stereodrawing of 3 is presented in Fig. 1.

## Biological Activity

Compound 3 was inactive when tested in an in vitro agar diffusion disc assay against Staphylococcus aureus 82 and Bacillus subtilis


Fig. 1. A stereoscopic view of 3 showing its conformation and absolute configuration



558 at $1 \mathrm{mg} / \mathrm{ml}$, the maximum level tested. It was also inactive in vivo against Streptococcus pyogenes in mice at $100 \mathrm{mg} / \mathrm{kg}$ both subcutaneously and orally.

## References

1) Lemahieu, R. A.; M. Carson, R. W. Kierstead, L.M. Fern \& E. Grunberg: Glycoside
cleavage reactions on erythromycin A. Preparation of erythronolide A. J. Med. Chem. 17: 953~956, 1974
2) Harris, D. R.; S. G. McGeachin \& H. H. Mills: The structure and stereochemistry of erythromycin A. Tetrahedron Lett. 1965: 679~685, 1965
